126 research outputs found

    Meteoritic basalts: The nakhlites, their parental magmas, cooling rates, and equivalents on Earth

    Get PDF
    Proposed one-bar phase equilibrium experiments, designed to determine the compositions of the nakhlites' parental magmas, are in progress. Proposed field studies on Earth, designed to find occurrences of rocks like the nakhlites, were extraordinarily successful. Other work supported in the past year included: attendance at the 1986 national meeting of the Geological Society of America; attendance at the 18th Lunar and Planetary Science Conference; completion and publication of a study of core formation in the SNC parent body; initiation of a study of the flux of SNC meteorites onto the Earth; and initiation of petrologic study of the Angra dos Reis achondrite

    Meteoritic basalts: The nakhlites, their parental magmas, cooling rates, and equivalents on Earth

    Get PDF
    Field study in northern Ontario was planned to compare cumulate rocks reported in the literature with the nakhlites in order to study the crystallization rates of the nakhlites and their possible geological settings. Experimental studies have progressed slowly because of the demands of the field work and teaching. The furnace is fully functional, and its thermocouple and oxygen sensor cells are functional and calibrated

    Crystal fractionation in the SNC meteorites: Implications for sample selection

    Get PDF
    Almost all rock types in the SNC meteorites are cumulates, products of magma differentiation by crystal fractionation (addition or removal of crystals). If the SNC meteorites are from the surface of Mars or near subsurface, then most of the igneous units on Mars are differentiated. Basaltic units probably experienced minor to moderate differientation, but ultrabasic units probably experienced extreme differentiation. Products of this differentiation may include Fe-rich gabbro, pyroxenite, periodotite (and thus serpentine), and possibly massive sulfides. The SNC meteorites include ten lithologies (three in EETA79001), eight of which are crystal cumulates. The other lithologies, EETA79001 A and B are subophitic basalts

    Iddingsite in the Nakhla meteorite: TEM study of mineralogy and texture of pre-terrestrial (Martian?) alterations

    Get PDF
    Rusty-colored veinlets and patches in the Nakhla meteorite, identified as iddingsite, are pre-terrestrial. The rusty material is iddingsite (smectites + hematite + ferrihydrite); like terrestrial iddingsites, it probably formed during low-temperature interaction of olivine and water. Fragments of rusty material with host olivine were removed from thin sections of Nakhla with a tungsten needle. Fragments were embedded in epoxy, microtomed to 100 nanometers thickness, and mounted on Cu grids. Phase identifications were by Analytical Electron Microscopy/Energy Dispersive X-ray Analysis (EM/EDX) standardless chemical analyses (for silicates), electron diffraction (hematite and ferrihydrite), and lattice fringe imaging. This iddingsite in Nakhla is nearly identical to some formed on Earth, suggesting similar conditions of formation on the Shergottites-Nakhlites-Chassigny (SNC) meteorite parent planet. A more detailed account of the results is presented

    A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age

    Get PDF
    ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface

    The Perils of Partition: Difficulties in Retrieving Magma Compositions from Chemically Equilibrated Basaltic Meteorites

    Get PDF
    The chemical compositions of magmas can be derived from the compositions of their equilibrium minerals through mineral/magma partition coefficients. This method cannot be applied safely to basaltic rocks, either solidified lavas or cumulates, which have chemically equilibrated or partially equilibrated at subsolidus temperatures, i.e., in the absence of magma. Applying mineral/ melt partition coefficients to mineral compositions from such rocks will typically yield 'magma compositions' that are strongly fractionated and unreasonably enriched in incompatible elements (e.g., REE's). In the absence of magma, incompatible elements must go somewhere; they are forced into minerals (e.g., pyroxenes, plagioclase) at abundance levels far beyond those established during normal mineral/magma equilibria. Further, using mineral/magma partition coefficients with such rocks may suggest that different minerals equilibrated with different magmas, and the fractionation sequence of those melts (i.e., enrichment in incompatible elements) may not be consistent with independent constraints on the order of crystallization. Subsolidus equilibration is a reasonable cause for incompatible- element-enriched minerals in some eucrites, diogenites, and martian meteorites and offers a simple alternative to petrogenetic schemes involving highly fractionated magmas or magma infiltration metasomatism

    The Parent Magmas of the Cumulate Eucrites: A Mass Balance Approach

    Get PDF
    The cumulate eucrite meteorites are gabbros that are related to the eucrite basalt meteorites. The eucrite basalts are relatively primitive (nearly flat REE patterns with La approx. 8-30 x CI), but the parent magmas of the cumulate eucrites have been inferred as extremely evolved (La to greater than 100 x CI). This inference has been based on mineral/magma partitioning, and on mass balance considering the cumulate eucrites as adcumulates of plagioclase + pigeonite only; both approaches have been criticized as inappropriate. Here, mass balance including magma + equilibrium pigeonite + equilibrium plagiociase is used to test a simple model for the cumulate eucrites: that they formed from known eucritic magma types, that they consisted only of magma + crystals in chemical equilibrium with the magma, and that they were closed to chemical exchange after the accumulation of crystals. This model is tested for major and Rare Earth Elements (REE). The cumulate eucrites Serra de Mage and Moore County are consistent, in both REE and major elements, with formation by this simple model from a eucrite magma with a composition similar to the Nuevo Laredo meteorite: Serra de Mage as 14% magma, 47.5% pigeonite, and 38.5% plagioclase; Moore County as 35% magma, 37.5% pigeonite, and 27.5% plagioclase. These results are insensitive to the choice of mineral/magma partition coefficients. Results for the Moama cumulate eucrite are strongly dependent on choice of partition coefficients; for one reasonable choice, Moama's composition can be modeled as 4% Nuevo Laredo magma, 60% pigeonite, and 36% plagioclase. Selection of parent magma composition relies heavily on major elements; the REE cannot uniquely indicate a parent magma among the eucrite basalts. The major element composition of Y-791195 can be fit adequately as a simple cumulate from any basaltic eucrite composition. However, Y-791195 has LREE abundances and La/Lu too low to be accommodated within the model using any basaltic eucrite composition and any reasonable partition coefficients. Postcumulus loss of incompatible elements seems possible. It is intriguing that Serra de Mage, Moore County, and Moama are consistent with the same parental magma; could they be from the same igneous body on the eucrite parent asteroid (4 Vesta)

    Comment on Mars as the Parent Body of the CI Carbonaceous Chondrites by J. E. Brandenburg

    Get PDF
    Geological and chemical data refute a martian origin for the CI carbonaceous chondrites. Here, I will first consider Brandenburg's [1996] proposal that the CI's formed as water-deposited sediments on Mars, and that these sediments had limited chemical interactions with their martian environment. Finally, I will address oxygen isotope ratios, the strongest link between the CIs and the martian meteorites

    Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    Get PDF
    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals

    Ca-Rich Carbonate Melts: A Regular-Solution Model, with Applications to Carbonatite Magma + Vapor Equilibria and Carbonate Lavas on Venus

    Get PDF
    A thermochemical model of the activities of species in carbonate-rich melts would be useful in quantifying chemical equilibria between carbonatite magmas and vapors and in extrapolating liquidus equilibria to unexplored PTX. A regular-solution model of Ca-rich carbonate melts is developed here, using the fact that they are ionic liquids, and can be treated (to a first approximation) as interpenetrating regular solutions of cations and of anions. Thermochemical data on systems of alkali metal cations with carbonate and other anions are drawn from the literature; data on systems with alkaline earth (and other) cations and carbonate (and other) anions are derived here from liquidus phase equilibria. The model is validated in that all available data (at 1 kbar) are consistent with single values for the melting temperature and heat of fusion for calcite, and all liquidi are consistent with the liquids acting as regular solutions. At 1 kbar, the metastable congruent melting temperature of calcite (CaCO3) is inferred to be 1596 K, with (Delta)bar-H(sub fus)(calcite) = 31.5 +/- 1 kJ/mol. Regular solution interaction parameters (W) for Ca(2+) and alkali metal cations are in the range -3 to -12 kJ/sq mol; W for Ca(2+)-Ba(2+) is approximately -11 kJ/sq mol; W for Ca(2+)-Mg(2+) is approximately -40 kJ/sq mol, and W for Ca(2+)-La(3+) is approximately +85 kJ/sq mol. Solutions of carbonate and most anions (including OH(-), F(-), and SO4(2-)) are nearly ideal, with W between 0(ideal) and -2.5 kJ/sq mol. The interaction of carbonate and phosphate ions is strongly nonideal, which is consistent with the suggestion of carbonate-phosphate liquid immiscibility. Interaction of carbonate and sulfide ions is also nonideal and suggestive of carbonate-sulfide liquid immiscibility. Solution of H2O, for all but the most H2O-rich compositions, can be modeled as a disproportionation to hydronium (H3O(+)) and hydroxyl (OH(-)) ions with W for Ca(2+)-H3O(+) (approximately) equals 33 kJ/sq mol. The regular-solution model of carbonate melts can be applied to problems of carbonatite magma + vapor equilibria and of extrapolating liquidus equilibria to unstudied systems. Calculations on one carbonatite (the Husereau dike, Oka complex, Quebec, Canada) show that the anion solution of its magma contained an OH mole fraction of (approximately) 0.07, although the vapor in equilibrium with the magma had P(H2O) = 8.5 x P(CO2). F in carbonatite systems is calculated to be strongly partitioned into the magma (as F(-)) relative to coexisting vapor. In the Husereau carbonatite magma, the anion solution contained an F(-) mole fraction of (approximately) 6 x 10(exp -5)
    corecore